Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function.

نویسندگان

  • Carmen Díez-Fernández
  • Liyan Hu
  • Javier Cervera
  • Johannes Häberle
  • Vicente Rubio
چکیده

Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We investigate here by in vitro expression studies using baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, as well as the disease-causing roles and pathogenic mechanisms of the mutations affecting this domain. All but three of the 18 missense changes found thus far mapping in this domain in CPS1D patients drastically decreased the yield of pure CPS1, mainly because of decreased enzyme solubility, strongly suggesting misfolding as a major determinant of the mutations negative effects. In addition, the majority of the mutations also decreased from modestly to very drastically the specific activity of the fraction of the enzyme that remained soluble and that could be purified, apparently because they decreased V(max). Substantial although not dramatic increases in K(m) values for the substrates or for N-acetyl-L-glutamate were observed for only five mutations. Similarly, important thermal stability decreases were observed for three mutations. The results indicate a disease-causing role for all the mutations, due in most cases to the combined effects of the low enzyme level and the decreased activity. Our data strongly support the value of the present expression system for ascertaining the disease-causing potential of CPS1 mutations, provided that the CPS1 yield is monitored. The observed effects of the mutations have been rationalized on the basis of an existing structural model of CPS1. This model shows that the UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, plays a key integrating role for creating the CPS1 multidomain architecture leading us to propose here a denomination of "Integrating Domain" for this CPS1 region. The majority of these 18 mutations distort the interaction of this domain with other CPS1 domains, in many cases by causing improper folding of structural elements of the Integrating Domain that play key roles in these interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool.

The urea cycle disease carbamoyl-phosphate synthetase deficiency (CPS1D) has been associated with many mutations in the CPS1 gene [Häberle et al., 2011. Hum Mutat 32:579-589]. The disease-causing potential of most of these mutations is unclear. To test the mutations effects, we have developed a system for recombinant expression, mutagenesis, and purification of human carbamoyl-phosphate synthet...

متن کامل

Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis

Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By bindi...

متن کامل

Cell and Gene Therapy for Carbamoyl Phosphate Synthetase 1 Deficiency

Carbamoyl phosphate synthetase 1 (CPS1) is the first and rate-limiting enzyme in the urea cycle. CPS1 deficiency is a devastating condition, which is clinically characterized by periodic episodes of life-threatening hyperammonemia. Currently, there is no cure for CPS1 deficiency except for liver transplantation, which is limited by a severe shortage of donors and significant risk of mortality a...

متن کامل

Two novel mutations in the CPS1 gene of a newborn with carbamoyl phosphate synthetase 1 deficiency identified by next-generation sequencing

Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive hereditary disease which usually presents as lethal hyperammonemia. Here we report the case of a newborn infant with lethal hyperammonemia. Blood liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed increased concentrations of alanine, glutamine and histidine. Urine gas chromatography-mass spe...

متن کامل

Ammonia-lowering activities and carbamoyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid

OBJECTIVE Ammonia detoxification is essential for physiological well-being, and the urea cycle in liver plays a predominant role in ammonia disposal. Nobiletin (NOB), a natural dietary flavonoid, is known to exhibit various physiological efficacies. In the current study, we investigated a potential role of NOB in ammonia control and the underlying cellular mechanism. MATERIALS/METHODS C57BL/6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular genetics and metabolism

دوره 112 2  شماره 

صفحات  -

تاریخ انتشار 2014